Structure theory for noncommutative Jordan H∗-algebras
نویسندگان
چکیده
منابع مشابه
A Generalization of Noncommutative Jordan Algebras*
and x y denotes the product x ‘3~ = my + y.2’. In Section 1 we show that a noncommutative Jordan algebra of characteristic # 2 must satisfy (1). Since power-associative algebras satisfying (1) need not be flexible [5] it follows that the class of power-associative algebras satisfying (1) is strictly larger than the class of noncommutative Jordan algebras. In Section 2 we obtain a structure theo...
متن کاملNoncommutative L Structure Encodes Exactly Jordan Structure
We prove that for all 1 ≤ p ≤ ∞, p 6= 2, the Lp spaces associated to two von Neumann algebrasM, N are isometrically isomorphic if and only if M and N are Jordan *-isomorphic. This follows from a noncommutative Lp Banach-Stone theorem: a specific decomposition for surjective isometries of noncommutative Lp spaces.
متن کاملNoncommutative jordan algebras with commutators satisfying an alternativity condition.
The theorems of this paper show that the main results in the structure and representation theory of Jordan algebras and of alternative algebras are valid for a larger class of algebras defined by simple identities which obviously hold in the Jordan and alternative cass. A new unification of the Jordan and associative theories is also achieved.
متن کاملExploring Noncommutative Algebras via Deformation Theory
In this lecture 1 I would like to address the following question: given an associative algebra A 0 , what are the possible ways to deform it? Consideration of this question for concrete algebras often leads to interesting mathematical discoveries. I will discuss several approaches to this question, and examples of applying them. 1. Deformation theory 1.1. Formal deformations. The most general a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1987
ISSN: 0021-8693
DOI: 10.1016/0021-8693(87)90018-4